Лазиус.Ру и ANTS           

Создание сайта:     Владислав Красильников       «ШКОЛА,  МУРАВЬИ И Компания»

Lasius.narod.ru
School, Ants & Co”

  
Главная Школа В Муравейник №1CD Поэзия Афоризмы Анекдоты Новости сайта

ANT =…AMEISE…ARINKO…EMMET…FOURMIS…FORMICA…FURNICA…HANGYA…HORMIGA…JENJOLA…KARINCA…LANGGAM…MAUR…MIAMMEL…MIER…MRAVEC…MRAVENEC…MROWKA... КAТКA...=МУРАВЕЙ…MUURAHAINEN…MYRA…MYRER…MYRMICA…NIMLA…SIPELGAS...SISIMIZE…

Муравьи - новый диагноз и определение по самцам

***
"Insectes sociaux", Муравьиные НОВОСТИ: Виды-2013 и 2014, Статьи-2008 и 2012


Добавлено 09-3-2020 

Formicidae (Hymenoptera, Aculeata): a new diagnosis

Brendon E. Boudinot1
E-mail: boudinotb@gmail.com

1 - Department of Entomology/Nematology, Briggs Hall, Rm. 381, University of California, Davis, U.S.A.

Contributions to the knowledge of Formicidae (Hymenoptera, Aculeata): a new diagnosis of the family, the first global male-based key to subfamilies, and a treatment of early branching lineages




"European Journal of Taxonomy "
2016,
120: с.1–62

 
      Ревизован и приведён новый диагноз семейства муравьи Formicidae, включая 5 новых апоморфий, включая одну уникальную синапоморфию. Приводится первый глобальный определиитель самцов всех подсемейств. Три базальные линии муравьёв “basal ants” рассмотрены детально: подсемейства Amblyoponinae, Leptanillinae и Martialinae. Самцы Martialis heureka (Martialinae) и Apomyrma (Amblyoponinae) подробно описаны. Дан диагноз подсемейств Martialinae и Leptanillinae по самцам, и дополнительные диагностические признаки самцов Amblyoponinae и рабочих Martialis. Подтверждено включение родов Scyphodon и Noonilla в подсемейство Leptanillinae. Отмечены потенциальные гомологичные апоморфии и дана морфологическая характеристика подсемейств Amblyoponinae, Leptanillinae и Martialinae.

      Formicidae Latreille, 1809

      Диагноз

      Муравьи - это жалящие перепончатокрылые Aculeate Hymenoptera, обладающие следующими апоморфиями:

      1. Eusocial, wingless worker caste present, colonies perennial (note 1).

      2. Sexuals with synchronous nuptial flights (note 2)

      3. Head capsule prognathous (worker, gyne) (note 1).

      4. Infrabuccal sac present between labium and hypopharynx (note 1).

      5. Antenna geniculate between long scape and funiculus (worker, gyne) (notes 1, 3).

      6. Disticoxal foramen directed laterally and completely enclosing protrochanteral base, including protrochanteral condyles, such that all disticoxal membrane concealed (all castes, Fig. 3C) (note 4).

      7. All meso- and metacoxal cavities small, circular, monocondylic, ventrally-directed, and disticoxae strongly produced laterally (all adult castes, Fig. 3C) (note 5).

      8. Metapleural gland present (adult castes, but see note 6).

      9. Propodeal spiracle located on lateral propodeal face distant from the anterodorsal propodeal corner, often near propodeum midlength (all adult castes) (note 7).

      10. Wings of alate gyne deciduous, being shed after copulation (note 1).

      11. Forewing 3rs-m and 2m-cu absent (note 1).

      12. Hindwing C not extending along anterior margin, even spectrally (note 8).

      13. Hindwing basal/radial cell not produced distally (alate castes) (note 9).

      14. Metasoma petiolate (abdominal segment II differentiated from segment II,I which is strongly constricted between the pre- and postsclerites) (all castes), extremely rarely (~ 1 species) abdominal segment III not constricted between pre- and postsclerites (notes 1 and 10).

      Additional, non-synapomorphic characters of value for diagnosis and identification include: Antenna with 4–12 antennomeres (female) or 5–13 antennomeres (male) (note 11). Bulbus neck (= radicle) and scape with common axis. Epicnemium extremely reduced, not visible in situ (note 12). Abdominal segment II with sternum and tergum equally sclerotized. Pterostigma present or absent (note 13). Wing venation variable, may be extremely reduced, with at minimum no closed cells (note 14). Jugal lobe present or absent; abdominal sternum IX may be complex and modified apically (including prongs, teeth, and lobes).

      Notes

      1. Noted as apomorphic by Bolton (2003).

      2. Bolton (2003) indicated that “sexuals with mass nuptial flight” was an apomorphy of the Formicidae. Although mass flights do occur in several lineages of ants, it is not clear if the ancestral condition for the Formicidae is to release large quantities of sexuals. The wording has been specifically rephrased here to account for this uncertainty.

      3. Males of many species have derived geniculate antennae with elongate scapes, including numerous Myrmicinae, most Formicinae, and Tapinoma (Dolichoderinae). Most males, including poneroids and numerous formicoids, however, have antennae which are not geniculate and have very short scapes.

      4. The procoxa of Formicidae is characteristically modified. The trochanteral foramen (situated apically on the procoxa) is directed laterally and entirely enclosed, revealing no membrane in undamaged specimens (Fig. 3C, left column, top row). Medially, the foramen is closed by an unfused seam of the anterior and posterior apical coxal lobes, which completely surround the anterior trochanteral process. The axis of coxal-trochanteral articulation, rather than being lateromedial as in Symphyta (Fig. 3A), or rotated obliquely as in many Aculeata (Fig. 3B), is almost entirely anteroposterior. Leg adduction and abduction occurs along this anteroposterior axis in more-or-less one plane of motion, with the trochanter rotating within the closed disticoxal foramen. The coxae and their articulations with the mesosoma and trochanters are poorly studied and show promise for valuable systematic characters. Previous work on hymenopteran coxae include Johnson (1988), which solely focused on the basicoxite and its musculature, Michener (1981), which focused on the meso- and metacoxae of the Apoidea, and Vilhelmsen et al. (2010), which operationalized several coxal characters. This character is unique to the Formicidae.

      5. The meso- and metacoxal foramina are monocondylic, bearing only the medial coxal articular processes and lacking the lateral coxal articular processes of the meso- and metapleurae. Lateral condyles are lacking in the examined species of Chyphotinae, Bradynobaenidae s. str., Mutillidae, and Myrmosidae.

      6. The metapleural gland, so distinctive of the female castes, is variably developed in males and has been lost in various taxa.

      7. The “high and far forward” placement of the propodeal spiracle remarked upon by Bolton (2003) as a plesiomorphy for the Formicidae is actually an apomorphy for the family. In non-formicid Aculeata (including Apoidea, Scoliidae, and Bradynobaenidae s. str.) the propodeal spiracle is usually situated at the extreme anterodorsal corner of the propodeum, usually within a propodeal spiracle length from the metanotum, and often on the dorsal propodeal face. Some Pompilidae and Tiphiidae (Tiphiinae) have the spiracle situated more posteriorly. Although the propodeal spiracle of †Sphecomyrma freyi is situated high—but laterally—and rather anteriorly (Wilson et al. 1967), it is clearly not at the extreme of other Aculeates. Other †Sphecomyrma species have more posteriorly situated spiracles which are clearly situated laterally (Wilson 1985; Engel & Grimaldi 2005). The potential male of †Sphecomyrma identified by Grimaldi et al. (1997) has a low spiracle situated at about segment midlength.

      8. Reduction of the hindwing costal vein occurs sporadically in other aculeate families.

      9. The basal/radial cell has been convergently reduced or lost in several ant subfamilies, and has been lost in Mutillidae, Myrmosidae, Bradynobaenidae s. str., and Chyphotidae. The generality of this trait in these families was not evaluated.

      10. The male of an unidentified Protanilla (Leptanillinae) from Thailand has secondarily lost petiolation, where the third abdominal segment is no longer constricted between the pre- and postsclerites (Fig.10A). These males are still recognizable as ants by the closed apical procoxal foramen, ventrallydirected meso- and metacoxal cavities, and low and lateral propodeal spiracle. Other Protanilla species (even in sympatry) retain the constriction, while yet others have petiolation of the third abdominal segment (Fig. 10B). Some males of the Dolichoderinae (e.g., Azteca) and other unidentified males of the Leptanillinae have very reduced petioles, but these are still distinctly differentiated from the third abdominal segment and are slightly posteriorly constricted.

      11. Antennomere count for males usually 13, less often 8–12 (count of 8 observed in Acropyga and Stenamma; counts of 10+ more common). Antennomere counts may be extremely reduced in inquilines, for example in Pheidole acutidens, which occasionally have an antennomere count of 5, although this is variable infraspecifically, and indeed may vary between the left and right antennae.

      12. Brothers (1975) contends that the form of the formicid epicnemium is unique, being highly reduced, fused to and extending over the height of the mesepisternum, and obscured by the pronotum. This putative homology was not evaluated in the present work.

      13. The pterostigma is lost in most Leptanillinae, some myrmicine genera, and some species of Leptomyrmex (Dolichoderinae).

      14. No closed cells are observed in some males of Leptanillinae and Myrmicinae.

     

     

     

     

     

Myrmica, Formica, Lasius, и Camponotus



 
 


     


Палеонтологическая история муравьев

"Муравей с Марса" и новое подсемейство

Фруктовая мимикрия муравьев, вызванная паразитом




Состав семьи   Гнездостроение   Питание   Голова   Грудь   Брюшко   Усики  Щупики  Домовые  Социальные паразиты   Древесные гнезда   Холмики и купола   Мирмекофилы  


Значение муравьев   Защита леса   Тли   Почва   Семена   Питание   Ужаления  Болезни  Домовые  Инвазии   Мирмекофилы   Листовертки   Пилильщики   Пяденицы   Шелкопряды





 
 


 



ЛИТЕРАТУРА
Cписок литературы.

  1. Baroni Urbani C., Bolton B. & Ward P.S. 1992. The internal phylogeny of ants (Hymenoptera: Formicidae). Systematic Entomology 17: 301–329. http://dx.doi.org/10.1111/j.1365-3113.1992.tb00553.x

  2. Bolton B. 1990a. Abdominal characters and status of the cerapachyine ants (Hymenoptera, Formicidae). Journal of Natural History 24: 53–68. http://dx.doi.org/10.1080/00222939000770051

  3. Bolton B. 1990b. The higher classification of the ant subfamily Leptanillinae (Hymenoptera: Formicidae). Systematic Entomology 15: 267–282. http://dx.doi.org/10.1111/j.1365-3113.1990.tb00063.x

  4. Bolton B. 1990c. Army ants reassessed: the phylogeny and classification of the doryline section (Hymenoptera, Formicidae). Journal of Natural History 24: 1339–1364. http://dx.doi.org/10.1080/00222939000770811

  5. Bolton B. 1994. Identification Guide to the Ant Genera of the World. Harvard University Press, Cambridge.

  6. Bolton B. 2003. Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute 71: 1–370.

  7. Boudinot B.E. 2013. The male genitalia of ants: musculature, homology, and functional morphology (Hymenoptera, Aculeata, Formicidae). Journal of Hymenoptera Research 30: 29–49. http://dx.doi.org/10.3897/jhr.30.3535

  8. Boudinot B.E., Sumnicht T.P. & Adams R.M.M. 2013. Central American ants of the genus Megalomyrmex (Hymenoptera: Formicidae): six new species and keys to workers and males. Zootaxa 3732: 1–82. http://dx.doi.org/10.11646/zootaxa.3732.1.1

  9. Brady S.G., Schultz T.R., Fisher B.L. & Ward P.S. 2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America 103: 18172–18177. http://dx.doi.org/10.1073/pnas.0605858103

  10. Brady S.G., Schultz T.R., Fisher B.L. & Ward P.S. 2014. The rise of army ants and their relatives: diversification of specialized predatory doryline ants. BMC Evolutionary Biology 14: 93. http://dx.doi.org/10.1186/1471-2148-14-93.

  11. Dlussky G.M. 1975. Superfamily Formicoidea Latreille, 1802. Family Formicidae Latreille, 1802. [In Russian] In: Rasnitsyn, A. P. Hymenoptera Apocrita of Mesozoic: 114–122. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR.

  12. Dlussky G.M. 1983. A new family of Upper Cretaceous Hymenoptera: an “intermediate link” between ants and the scoliids. [In Russian] Paleontologicheskii Zhurnal 1983(3): 65–78.

  13. Dlussky G.M. 1988. Ants of Sakhalin amber (Paleocene?). [In Russian] Paleontologicheskii Zhurnal 1988 (1): 50–61.

  14. Dlussky G.M. 1996. Ants (Hymenoptera: Formicidae) from Burmese amber. Paleontological Journal 30: 449–454.

  15. Dlussky G.M. 1999. The first find of the Formicoidea (Hymenoptera) in the lower Cretaceous of the northern hemisphere. [In Russian] Paleontologicheskii Zhurnal 1999 (3): 62–66.

  16. Dlussky G.M., Brothers D.J. & Rasnitsyn A.P. 2004. The first Late Cretaceous ants (Hymenoptera: Formicidae) from southern Africa, with comments on the origin of the Myrmicinae. Insect Systematics and Evolution 35: 1–13.

  17. Dlussky G.M. & Fedoseeva E.B. 1988. Origin and early stages of evolution in ants. [In Russian] In: Ponomarenko A.G. (ed.) Cretaceous Biocenotic Crisis and Insect Evolution: 70–144. Nauka, Moskva.

  18. Dlussky G.M. & Rasnitsyn A.P. 2009. Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of central and eastern Europe. Paleontological Journal 43: 1024–1042.

  19. Emery C. 1910. Hymenoptera. Fam. Formicidae. Subfam. Dorylinae. Genera Insectorum 102: 1–34. http://www.biodiversitylibrary.org/bibliography/45481#/summary

  20. Engel M.S. & Grimaldi D.A. 2005. Primitive new ants in Cretaceous amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae). American Museum Novitates 3485: 1–23.

  21. Forel A. 1893. Sur la classification de la famille des Formicides, avec remarques synonymiques. Annales de la Société Entomologique de Belgique 37: 161–167.

  22. Gotwald W.H. Jr. 1969. Comparative morphological studies of the ants, with particular reference to the mouthparts (Hymenoptera: Formicidae). Cornell University Agricultural Experiment Station 408: 3–150.

  23. Grimaldi D., Agosti D. & Carpenter J.M. 1997. New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. American Museum Novitates 3208: 1–43.

  24. Keller R.A. 2011. A phylogenetic analysis of ant morphology (Hymenoptera: Formicidae) with special reference to the poneromorph subfamilies. Bulletin of the American Museum of Natural History 355: 1–90.

  25. Kück P., Hita Garcia F., Misof B. & Meusemann K. 2011. Improved phylogenetic analyses corroborate a plausible position of Martialis heureka in the ant tree of life. PLoS ONE 6: e21031. http://dx.doi.org/10.1371/journal.pone.0021031

  26. Kugler C. 1992. Stings of ants of the Leptanillinae (Hymenoptera: Formicidae). Psyche 99: 103–115.

  27. LaPolla J.S., Dlussky G.M. & Perrichot V. 2013. Ants and the fossil record. Annual Review of Entomology 58: 609–630. http://dx.doi.org/10.1146/annurev-ento-120710-100600

  28. Moreau C.S., Bell C.D., Vila R., Archibald S.B. & Pierce N.E. 2006. Phylogeny of the ants: diversifi-cation in the age of angiosperms. Science 312: 101–104. http://dx.doi.org/10.1126/science.1124891

  29. Moreau C.S. (2009). Inferring ant evolution in the age of molecular data (Hymenoptera: Formicidae) // Myrmecological News. 2009. V. 12. P. 201–210.

  30. Morley B.D.W. 1939. The phylogeny of the Cerapachyinae, Dorylinae, and Leptanillinae (Hym. Formicidae). Bulletin de la Société Entomologique de France 44: 114–118.

  31. Rabeling C., Brown J.M. & Verhaagh M. 2008. Newly discovered sister lineage sheds light on early ant evolution. Proceedings of the National Academy of Sciences B 105: 14913–14917. http://dx.doi.org/10.1073/pnas.0806187105

  32. Saux C., Fisher B.L. & Spicer G.S. 2004. Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae). Molecular Phylogenetics and Evolution 33: 457–468. http://dx.doi.org/10.1016/j.ympev.2004.06.017

  33. Schmidt C. 2013. Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa 3647: 201–250. http://dx.doi.org/10.11646/zootaxa.3647.2.1

  34. Schmidt C.A. & Shattuck S.O. 2014. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 3817: 1–242. http://dx.doi.org/10.11646/zootaxa.3817.1.1

  35. Shattuck S.O. 1992. Generic revision of the ant subfamily Dolichoderinae (Hymenoptera: Formicidae). Sociobiology 21: 1–181.

  36. Ward P.S. 1990. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): generic revision and relationship to other formicids. Systematic Entomology 15: 449–489. http://dx.doi.org/10.1111/j.1365-3113.1990.tb00077.x

  37. Ward P.S. 2014. The phylogeny and evolution of ants. Annual Review of Ecology, Evolution, and Systematics 45: 2.1–2.21. http://dx.doi.org/10.1146/annurev-ecolsys-120213-091824

  38. Ward P.S. & Brady S.G. 2007. Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae). Invertebrate Systematics 17: 361–386. http://dx.doi.org/10.1071/IS02046

  39. Ward P.S., Brady S.G., Fisher B.L. & Schultz T.R. 2010. Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Systematic Biology 59: 342-362. http://dx.doi.org/10.1093/sysbio/syq012

  40. Ward P.S., Brady S.G., Fisher B.L. & Schultz T.R. 2015. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology 40: 61–81. http://dx.doi.org/10.1111/syen.12090

  41. Wheeler G.C. & Wheeler E.W. 1976. Ant larvae: Review and synthesis. Memoirs of the Entomological Society of Washington 7: 1–108.

  42. Wheeler G.C. & Wheeler J. 1972. The subfamilies of Formicidae. Proceedings of the Entomological Society of Washington 74: 35–45.

  43. Wheeler G.C. & Wheeler J. 1985. A simplified conspectus of the Formicidae. Transactions of the American Entomological Society 111: 255–264.

  44. Wheeler W.M. 1910. Ants: Their Structure, Development and Behavior. Columbia University Press, New York.

  45. Wheeler W.M. 1915 (1914). The ants of the Baltic Amber. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg 55: 1–142.

  46. Wheeler W.M. 1923. Social life among the insects. New York, Harcourt, Brace and Co.

  47. Wilson E.O. 1955. A monographic revision of the ant genus Lasius. Bulletin of the Museum of Comparative Zoology 113: 1–201.

  48. Wilson E.O. 1985. Ants from the Cretaceous and Eocene amber of North America. Psyche 92: 205–216. Wilson E.O., Carpenter F.M. & Brown W.L. Jr. 1967. The first Mesozoic ants, with a description of a new subfamily. Psyche 74: 1–19.

  49. Wilson E.O., Eisner T., Wheeler G.C. & Wheeler J. 1956. Aneuretus simoni Emery, a major link in ant evolution. Bulletin of the Museum of Comparative Zoology 115: 81–99.

  50. Yamane S., Bui T.V. & Eguchi K. 2008. Opamyrma hungvuong, a new genus and species of ant related to Apomyrma (Hymenoptera: Formicidae: Amblyoponinae). Zootaxa 1767: 55–63.

  51. Yoshimura M. & Fisher B.L. 2007. A revision of male ants of the Malagasy region (Hymenoptera: Formicidae): key to subfamilies and treatment of the genera of Ponerinae. Zootaxa 1654: 21–40.

  52. Yoshimura M. & Fisher B.L. 2011. A revision of male ants of the Malagasy region (Hymenoptera: Formicidae): Key to genera of the subfamily Dolichoderinae. Zootaxa 2794: 1–34.

  53. Yoshimura M. & Fisher B.L. 2012a. A revision of male ants of the Malagasy Amblyoponinae (Hymenoptera: Formicidae) with resurrections of the genera Stigmatomma and Xymmer. PLoS ONE 7: e3325. http://dx.doi.org/10.1371/journal.pone.0033325

  54. Yoshimura M. & Fisher B.L. 2012b. A revision of the Malagasy endemic genus Adetomyrma (Hymenoptera: Formicidae: Amblyoponinae). Zootaxa 3341: 1–31.

  55. Yoshimura M. & Onoyama K. 2002. Male-based keys to the subfamilies and genera of Japanese ants (Hymenoptera: Formicidae). Entomological Science 5: 421–443.

  56. Seifert B., Goropashnaya A.V. (2004). Ideal phenotypes and mismatching haplotypes – errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry // Organisms Diversity & Evolution. 2004. V. 4. P. 295–305. doi 10.1016/j.ode.2004.04.005



 
 

©2018, Vladislav Krasilnikov (translation & supplement) 

Всякое использование без согласования с автором и без активной гиперссылки на наш сайт преследуется в соответствии с Российским законодательством об охране авторских прав. 







Разработка сайта и дизайн:
© 2003 -
Владислав Красильников

Здесь могла бы быть ваша реклама

Rambler's Top100

Почему Лазиус?
 LASIUS@narod.ru

Используются технологии uCoz