Лазиус.Ру и ANTS           

Создание сайта:     Владислав Красильников       «ШКОЛА,  МУРАВЬИ И Компания»

Lasius.narod.ru
School, Ants & Co”

  
Главная Школа В Муравейник №1CD Поэзия Афоризмы Анекдоты Новости сайта

ANT =…AMEISE…ARINKO…EMMET…FOURMIS…FORMICA…FURNICA…HANGYA…HORMIGA…JENJOLA…KARINCA…LANGGAM…MAUR…MIAMMEL…MIER…MRAVEC…MRAVENEC…MROWKA... КAТКA...=МУРАВЕЙ…MUURAHAINEN…MYRA…MYRER…MYRMICA…NIMLA…SIPELGAS...SISIMIZE…

Литература по генетике муравьев

***
"Insectes sociaux", Муравьиные НОВОСТИ: Виды-2007 и 2006, Статьи-2007 и 2006


Добавлено 12-08-2007

2n=2-106

 
      Ниже приводится список литературы по генетике, филогеографии и молекулярной биологии муравьев (более 100 источников) и список наших обзоров последних статей по этой теме.




      Другие наши обзоры по генетической теме:

Число хромосом у муравьев (Обзор)

Эволюция многократного спаривания у кочевых муравьев

Молекулярная филогения огненных муравьев

Структура гена GLUT8 у огненного муравья

Cтруктура гена SiGSTS1 и его проявление у разных социальных форм огненного муравья

Молекулярная филогенетика базального ствола муравьев (rRNA)

Молекулярная филогенетика подсемейств муравьев (rDNA)

Подсемейства и ДНК: молекулярная филогенетика

Филогенетика Myrmecia (муравьи-бульдоги) и Nothomyrmecia (рибосомальные РНК 18S и 28S)

Филогения муравьев-"Дракула" с выводами для всех

Ген abdominal-A и строение стебелька муравьев

Цитогенетика редких неотропических муравьев Typhlomyrmex

Генетическая структура популяций лесных муравьев Formica

Молекулярная генетика двух парапатрических видов-близнецов муравьев рода Temnothorax

Анализ разнообразия муравьев комплекса Tetramorium caespitum/impurum

Молекулярная генетика муравья Myrmica kotokui

Молекулярная генетика муравья Myrmica scabrinodis

Изоляция микросателлитных локусов Myrmica scabrinodis

Эволюция ДНК: Анализ satellite DNA у 3 видов Messor

Обзор других кариотипов муравьев

ДНК: Анализ satellite DNA у 8 видов Formica

ДНК Monomorium subopacum отличается от всех насекомых

Formica rufa group: рецентное видообразование

Генетика 2-х социальных форм Formica truncorum

Formica: Genetic changes

Найден антимикробный ген Formica aquilonia

Филогеография Formica

Генетика метаморфоза разных стадий Camponotus festinatus

Полифенизм или дискретные адаптивные фенотипы

Инбридинг и родство у Plagiolepis pygmaea

Polyrhachis: анализ гена cytochrome b

Pogonomyrmex: гены и фуражировка

Филогеография Formica

Молекулярная генетика ускорит инвентаризацию Мадагаскара (+литература)

Monomorium subopacum: исследование ДНК

Heteroponera dolo: экология и цитогенетика >>>

Diacamma indicum: генетическая вариабельность

Dinoponera побили рекорд 2n=106

Впервые изучены хромосомы Cylindromyrmex brasiliensis

Camponotus ocreatus: генетическая структура колоний

Lasius (Dendrolasius) fuliginosus: microsatellite markers

Formica selysi: число королев и популяционная генетика

Гены крылатых и бескрылых самок огненных муравьев

ДНК грибов-симбионтов в гнездах муравьев-листорезов

Formica exsecta: Моно- и Полигиния и гены

n=1 у Myrmecia croslandi и рибосомальная РНК

Formica rufa group: фенотип и несоответствие ему гаплотипа mtDNA и литература по филогенетике ...





 

 


***


 
      Здесь я подобрал в муравьиной базе данных Formis-2003 (где собрано 30 тыс.статей о муравьях за 200 лет) по ключевым словам [genetics (497 статей), DNA (165), chromosome (125), karyotype (73), sibling (49), hybridization (43), Mitochondrial DNA (26), Ribosomal DNA (10), Ribosomal RNA (7), karyology (5), nucleolus organizer (2), molecular mapping (1), DNA hybridization (4), structural genes (8), tRNA (5), mt DNA sequences (4), molecular phylogeny (12), molecular evolutionary rates (4), DNA loci (2), codon (8), cytochrome b (9), nucleotide sequences (27), chromosome number (35), speciation (38)] основные работы по хромосомной теме у муравьев:



  1. Agosti, D. and E. Hauschteck-Jungen (1988 ("1987")). "Polymorphism of males in Formica exsecta Nyl. (Hymenoptera: Formicidae)." Insect. Soc. 34: 280-290.
    Все самцы муравьев как правило гаплоидны. Исследованы нервные клетки (Brain cells) микранеров и макранеров (micraner & macraner) самцов F. exsecta: у них оказалось разное число хромосом. Большинство были гаплоидными, но некоторые были диплоидными и даже полиплоидными. Все макранеры имели как минимум 90% гаплоидных клеток, а все микранеры имели менее 59% гаплоидных клеток. PDF-копия статьи

  2. Baur, A., N. Chalwatzis, Buschinger, A., Zimmermann, F.K. (1995). "Mitochondrial DNA sequences reveal close relationships between social parasitic ants and their host species." Curr. Genet. 28: 242-247.
    В трибе Leptothoracini, филогенетические взаимоотношения социальнопаразитических видов (Doronomyrmex kutteri, D. goesswaldi и Harpagoxenus sublaevis) и из хозяев Leptothorax acervorum весьма спорны. Ещё более спорны взамоотношения паразита Chalepoxenus muellerianus и его хозяев Leptothorax unifasciatus, L. nigriceps, L. interruptus и L. recedens. На основании морфологических, экологических и этологических критериев известно, что социальные паразиты и их хозяева эволюционируют от общих предков, а значит, все они должны включаться в общую таксономическую группу. Это требует разделения трибы Leptothoracini на 2 подгруппы, одна включает подрод Leptothorax (s.str.) и подрод Myrafant, вместе с их соответствующими паразитическими родами. Авторы использовали polymerase chain reaction (PCR) для сравнения 360-bp sequence митохондриальных генов (cytochrome b) у 14 видов трибы Leptothoracini и дополнительно вида Tetramorium impurum из трибы Tetramoriini. Результаты в целом согласуются с морфологическими исследованиями, которые показывают, что общие анцестральные виды эволюционируют в вид-хозяин и вид-паразит. Это очень характерно для группы Leptothorax (s. str.), но менее явно у видов из группы Myrafant. Leptothorax (Temnothorax) recedens shows a greater sequence divergence than the outgroup species T. impurum.

  3. Baur, A., M. Sanetra, Chalwatzis, N., Buschinger, A., Zimmermann, F.K. (1996). "Sequence comparisons of the internal transcribed spacer region of ribosomal genes support close relationships between parasitic ants and their respective host species (Hymenoptera: Formicidae)." Insect. Soc. 43: 53-67.

  4. Baur, A., A. Buschinger, et Zimmermann, F.K. (1993). "Molecular cloning and sequencing of 18S rDNA gene fragments from six different ant species." Insect. Soc. 40: 325-335.
    Молекулярное исследование рибосомальных РНК у 6 видов Европы: Camponotus ligniperda, Chalepoxenus muellerianus, Doronomyrmex kutteri, Harpagoxenus sublaevis, Leptothorax acervorum, Leptothorax recedens

  5. Chapuisat, M. (1994). Microsatellites for measuring relatedness in Formica ants. Les insectes sociaux. 12иme congres de l'Union Internationale pour l'Etude des Insectes Sociaux. Paris, Sorbonne, 21-27 aout 1994. A. Lenoir, G. Arnold and M. Lepage. Paris. xxiv + 583 p., Universite Paris Nord: 45.

  6. Chiotis, M., L. S. Jermiin, et al. (2000). "A molecular framework for the phylogeny of the ant subfamily Dolichoderinae." Mol. Phylog. Evol. 17: 108-116.
    Исследованы митохондриальные гены транспортных РНК (tRNA) 14 родов Dolichoderinae и ещё 3 родов издругих подсемейств. Partial sequences are reported for the mitochondrial genes for cytochrome oxidase subunits 2 and 3 and for cytochrome b, and the entire sequence of the gene for tRNA(L)UUR for species from 14 genera of dolichoderine ants and from three outgroup genera. Considerable variation was observed between tRNA genes in the size of the TAPC arm and the DHU and anticodon loops and whether or not the TYC stem possesses a GC pair. The outgroup taxa showed complete TAA C01 stop codons, but dolichoderines have either TA or T. The outgroup taxa showed a noncoding gap between the COI and the tRNA(L)UUR genes. A phylogeny-independent compatibility test using the amino acid sequences showed differences between the genes consistent with variation in evolutionary rates, according with other studies. Base compositions proved heterogeneous between species, hence phylogenetic, analysis was restricted to the protein sequences using maximum likelihood and the mtREV24 replacement matrix. A maximum-likelihood consensus tree has similarities to those from morphological studies with some exceptions such Leptomyrmex falling within the dolichoderine genera rather than basally, and the accretion of genera formerly included under Iridomyrmex. Features of the tRNA genes and the COI termination codons agree quite well with the molecular phylogeny.

  7. Craig, R. and R. H. Crozier (1979). "Relatedness in the polygynous ant Myrmecia pilosula." Evolution 33: 335-341.
    Коэффициент степени родственности (b) самок и рабочих полигинных колоний Myrmecia pilosula были подсчитаны с помощью isozyme genotypes using regression analysis of genotype upon genotype interactions in the population. Genotypes were deduced from isozyme phenotypes after starch gel electrophoresis. The relatedness of queens was estimated with 95% confidence limits as b = 0.243 ± 0.113, and the relatedness of workers was estimated as b = 0.172±0.053. In both cases the relatedness was significantly greater than b = 0.

  8. Crosland, M. W. J. (1988). "Effect of a gregarine parasite on the color of Myrmecia pilosula (Hymenoptera: Formicidae)." Ann. Entomol. Soc. Am. 81: 481-484.
    Soft-bodied brown ants were found in some colonies of the black ant Myrmecia pilosula (F. Smith) during the season when young adult workers eclose. Brown workers were previously thought to be young callows whose cuticle had not yet darkened. Strong evidence is presented against this hypothesis. Furthermore, all brown ants dissected (n = 50) were found to contain very many spores of a gregarine protozoan parasite. Normal black workers of M. pilosula usually contained no gregarine spores. Aberrant brown workers discovered in two other species of Myrmecia were also found to have hemocoeles filled with gregarine spores. It seems likely that the gregarine parasite, when present in very large numbers, interferes with the normal darkening of cuticle in the pupal stage, leading to abnormal brown ants.

  9. Crosland, M. W. J. (1989). "Intraspecific aggression in the primitive ant genus Myrmecia." Insect. Soc. 36: 161-172.
    Только что вылупившиеся из коконов молодые рабочие не подвергаются нападению рабочих из других колоний того же вида. Это показано для 3 видов Myrmecia. This finding contradicts the much quoted anecdotal report of Haskins and Haskins (1950). Aggression against conspecific alien worker controls was always significantly greater than aggression in Myrmecia rarely resulted in mortality. Nevertheless, in all six species of Myrmecia kept in the laboratory, mortality did result from frequent intra-colony aggression between workers. Possible explanations are discussed for this unexpected aggression within colonies.

  10. Crosland, M. W. J. and R. H. Crozier (1986). "Myrmecia pilosula, an ant with only one pair of chromosomes." Science 231: 1278.
    Новый вид-сиблинг примитивного австралийского муравья Myrmecia pilosula обладает n = 1. Методика C-banding techniques подтвердила, что две хромосомы рабочих гомологичны. Самцы гаплоидны, и их соматические клетки содержат только одну хромосому.

  11. Crosland, M. W. J., R. H. Crozier, et Imai, H.T. (1988). "Evidence for several sibling biological species centred on Myrmecia pilosula (F. Smith) (Hymenoptera: Formicidae)." J. Aust. Entomol. Soc. 27: 13-14.
    У вида Myrmecia pilosula (F. Smith) хромосомный набор варьирует в больших пределах: 2n = 2, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31 и 32. Кариотипические и морфологические данные говорят о наличие в комплексе 'M. pilosula' complex как минимум 3 биоллогических видов.

  12. Crosland, M. W. J., R. H. Crozier, et Jefferson, E. (1988). "Aspects of the biology of the primitive ant genus Myrmecia F. (Hymenoptera: Formicidae)." J. Aust. Entomol. Soc. 27: 305-309.
    В отличие о других примитивных муравьев, рабочие особи как минимум 4 видов Myrmecia не могут самостоятельно выходить из коконов. Workers of some Myrmecia species have large functional ovaries and a spermatheca. Workers of such species lay trophic eggs. In other Myrmecia species the workers have reduced ovaries and trophallaxis occurs by oral regurgitation. Описаны брачный лет и эргатандроморфы Myrmecia (ergatandromorph).

  13. Crozier, R. H. (1968). "An acetic acid dissociation, air drying technique for insect chromosomes, with aceto-lactic orcein staining." Stain Technol. 43: 171-173.

  14. Crozier, R. H. (1968). "The chromosomes of three Australian dacetine ant species (Hymenoptera: Formicidae)." Psyche 75: 87-90.

  15. Crozier, R. H. (1968). "Interpopulation karyotype differences in Australian Iridomyrmex of the "detectus" group (Hymenoptera: Formicidae: Dolichoderinae)." J. Aust. Entomol. Soc. 7: 25-27.

  16. Crozier, R. H. (1969). "Chromosome number polymorphism in an Australian ponerine ant." Can. J. Genet. Cytol. 11: 333-339.

  17. Crozier, R. H. (1969). Genetic and phylogenetic studies on ants, Ph.D. dissert., Cornell University, 112 p. *[31 species were studied using genetic techniques, 2 also studied using gel electrophoresis of esterases] [Dissert. Abstr. Int. B 30: 5568-9] [Order # 7008664]

  18. Crozier, R. H. (1969 ("1968")). "Cytotaxonomic studies on some Australian dolichoderine ants (Hymenoptera: Formicidae)." Caryologia 21: 241-259.

  19. Crozier, R. H. (1970). "Karyotypes of twenty-one ant species (Hymenoptera: Formicidae), with reviews of the known ant karyotypes." Can. J. Genet. Cytol. 12: 109-128. Обзор 92 известсных кариотипов муравьев Поправка: в статье следует читать Haploid no. for Polyergus samurai is 27.

  20. Crozier, R. H. (1970). "On the potential for genetic variability in haplo-diploidy." Genetica 41: 551-556.

  21. Crozier, R. H. (1970). "Pericentric rearrangement polymorphism in a North American dolichoderine ant (Hymenoptera: Formicidae)." Can. J. Genet. Cytol. 12: 541-546.

  22. Crozier, R. H. (1971). "Heterozygosity and sex determination in haplo-diploidy." Am. Nat. 105: 399-412.

  23. Crozier, R. H. (1973). "Apparent differential selection at an isozyme locus between queens and workers of the ant Aphaenogaster rudis." Genetics 73: 313-318.

  24. Crozier, R. H. (1973). "Patterns of allozyme variation in natural populations of the ant Aphaenogaster rudis." Genetics 74(2Part2): 57.

  25. Crozier, R. H. (1974). "Allozyme analysis of reproductive strategy in the ant Aphaenogaster rudis." Isozyme Bull. 7: 18.

  26. Crozier, R. H. (1975). Animal cytogenetics. 3. Insecta. (7) Hymenoptera. Berlin, Gebrьder Borntraeger.

  27. Crozier, R. H. (1976). "Counter-intuitive property of effective population size." Nature 262: 384.

  28. Crozier, R. H. (1976). "Genetic boundaries in the ant Aphaenogaster rudis." Isozyme Bull. 9: 58.

  29. Crozier, R. H. (1976). "Why male-haploid and sex-linked genetic systems seem to have unusually sex-limited mutational genetic loads." Evolution 30: 623-624.

  30. Crozier, R. H. (1977). "Evolutionary genetics of the Hymenoptera." Annu. Rev. Entomol. 22: 263-288.

  31. Crozier, R. H. (1977). "Genetic differentiation between populations of the ant Aphaenogaster "rudis" in the southeastern United States." Genetica 47: 17-36.

  32. Crozier, R. H. (1979). Genetics of sociality. Social insects. Volume 1. H. R. Hermann. New York. xv + 437 p., Academic Press: 223-286.

  33. Crozier, R. H. (1980). Genetical structures of social insects populations. Evolution of Social Behaviour: Hypotheses and Empirical Tests. Dahlem Konferenzen 1980. H. Markl. Weinheim, Verlag Chemie GmbH: 129-145.

  34. Crozier, R. H. (1981). Genetic aspects of ant evolution. Essays in evolution and speciation in honor of M. J. D. White. W. R. Atchley and D. C. Woodruff. Cambridge. ix + 436 p., Cambridge University Press: 356-370.

  35. Crozier, R. H. (1982). On insects and insects: twists and turns in our understanding of the evolution of eusociality. The biology of social insects. Proceedings of the Ninth Congress of the IUSSI, Boulder, Colorado, August 1982. M. D. Breed, C. D. Michener and H. E. Evans. Boulder, Westview Press: 4-9.

  36. Crozier, R. H. (1982). "Social insects. [Review of: P. E. Howse & J. L. Clement (eds.), 1981, Biosystematics of social insects (Proceedings of a symposium, Paris, 1980), Academic Press]." Science 216: 403.

  37. Crozier, R. H. (1983). Genetics and insect systematics: retrospect and prospect. Australian systematic entomology: a bicentenary perspective. E. Highley and R. W. Taylor. Melbourne. vii + 147 p., CSIRO: 80-92.

  38. Crozier, R. H. (1985). Adaptative consequences of male-diploidy. Spider Mites. Their Biology, Natural Enemies and Control. W. Helle and M. Sabelis, Elsevier Science Publ. 1A: 201-222.

  39. Crozier, R. H. (1986). "Genetic clonal recognition abilities in marine invertabrates must be maintained by selection for somenthing else." Evolution 40: 1100-1101.

  40. Crozier, R. H. (1987). Genetic aspects of kin recognition: concepts, models, and synthesis. Kin recognition in animals. D. J. C. Fletcher and C. D. Michener. New York, John Wiley: 55-73.

  41. Crozier, R. H. (1987). Towards a sociogenetics of social insects. Chemistry and biology of social insects (Proceedings of the Tenth International Congress of the International Union for the Study of Social Insects, Munich, 1986). J. Eder and H. Rembold. Munich, Verlag J. Peperny: 325-328.

  42. Crozier, R. H. (1989). "Insect sociobiology (Review of Breed & Page, 1989, The genetics of social evolution, Westview Press)." Science 245: 313-315.

  43. Crozier, R. H. (1989). Kin recognition using innate labels: a central role for piggy-backing? Invertebrate historecognition. R. K. Grosberg, D. Hedgecock and K. Nelson. New York and London, Plenum Press: 143-156.
    Kin recognition enables incest avoidance and kin selection, and it is this last point that has probably fueled most interest in it among evolutionists. Kin recognition can rest on context (such as a shared nest- site), but there is good evidence that innate components are important, leading to much attention to the allele-frequency dynamics of such systems. The earlier theoretical framework distinguished betweem green- beard alleles, recognition alleles, and phenotype matching. Useful definitions of these categories can be framed, but consideration of the molecular mechanisms involved erodes these as absolutely distinct. The most operational approach is to concentrate on phenotype matching. Kin- recognition involves distinctions between classes of individuals: it does not necessarily entail individual recognition, nor does necessarily individual recognition facilitate kin recognition. Social insect colonies, unlike those of marine invertebrates, are genetically heterogeneous and are made up of one or more family groups. This make-up has lВd to a concentration on the problem of distinguishing nestmates from non- nestmates when the nestmates often differ from oneself in the labels that they carry. Under current models an individual compares the arrays of labels carried by others with a template and rejects them as nest-mates if the number of matches between their labels and that of the template falls below a critical value. The template may have various origins, being derived from one or more referents (e. g. the individual itself, the queen(s), or the whole assemblage of nestmates). The models indicate that a few highly variable loci would enable the system to work. The amounts of genetic variation envisaged are larger for most loci, but not for histocompatibility loci. The possible systems vary in the stringency with which the matches are assessed with regard to the template. The work on social insects has concentrated on determining which individuals are referents involved in template formation, and on the onogeny of this formation. Significant variation between species is apparent. Two models have been proposed for kin recognition in marine invertebrates, differing as to whether genetic identity is required for a match at a locus, or whether possession of at least one allele in common suffices. Because this recognition leads to agonistic interactions, it is likely that common genotypes have higher fitness than rare ones because they are involved in fewewr agonistic interactions. Although both models lead to heterozygote advantage, each also leads to fixation of the initially commonest allele. The observed polymorphism is therefore not maintained by this kin recognition, but rather persists in spite of it. It seems that polymorphism at the label loci is maintained by selection for some other function; their recognition role is truly an 'effect,' with the recognition function piggy- backing on one or more other systems. The immune system may be the most important such system. Variation in the genetical sources of the labels is likely to be an important source of variation in kin-recognition systems. In higher vertebrates and in social insects, the likely use of many labels suggests the possibility of evolutionary switching between them in order to use those with the highest current levels of polymorphism. Unless the cost of adding further receptors is significant, however, the increasing incorporation of labels into the recognition system would result in the reduction of recognition selection on individual component loci. In higher vertebrates and in social insects, the likely use of many labels suggests the possibility of evolutionary switching between labels, or the steady incorporation of additional labels into the recognition system. Evolutionary switching, which allows use of those labels with the highest current levels of polymorphism, would be favored if the cost of adding additional receptors is significant. The addition of further labels, reducing the strength of recognition selection on individual loci, woul be favored if it is cheap to add necessary receptors.

  44. Crozier, R. H. and P. C. Consul (1976). "Conditions for genetic polymorphism in social Hymenoptera under selection at the colony level." Theor. Pop. Biol. 10: 1-9.

  45. Crozier, R. H. and M. W. Dix (1979). "Analysis of two genetic models for the innate components of colony odor in social Hymenoptera." Behav. Ecol. Sociobiol. 4: 217-224.

  46. Crozier, R. H. and E. J. Fjerdingstad (2001). "Polyandry in social Hymenoptera — disunity in diversity?" Ann. Zool. Fennici 38: 267–285.
    Многократное спаривание (полиандрия) встречается у многих видов общественных Перепончатокрылых Hymenoptera. Hypotheses to explain multiple mating include a need for more sperm than provided by a single male, the convergence of queen and worker sex-allocation optima and various genetic diversity hypotheses. For some species the sperm need hypothesis fails since queens retain only a single male’s worth of sperm. In other cases, sperm store does increase with the number of matings. Similarly for the sex-allocation and genetic diversity hypotheses, data from some species are in support, those from others are not. Comparative analysis reveals a negative correlation between level of genetic diversity (of which queen mate number is an important determinant) and parasite load; findings in the best-studied case are complex: monandry and higher levels of polyandry are each selectively favored over moderate polyandry. Out of 14 identifiable hypotheses five are judged most useful for future work. Unfortunately, the search for a simple unitary model to explain all cases seems futile. A model encompassing all of these factors is desirable for studies on single species, but would be complex. Comparative analyses remain desirable, but should encompass the likelihood that different factors predominate in different groups.

  47. Crozier, R. H., B. E. Kaufmann, et al. (1999). "Mutability of microsatellites developed for the ant Camponotus consobrinus." Mol. Ecol. 8: 271-276.
    Пять высокополиморфных микросателлитных локуса (GA)n microsatellite loci обнаружены у муравья Camponotus consobrinus. The occurrence of many nests with a simple family structure enabled a search for new mutations, 11 of which were found from 3,055 informative typings. These mutations were not randomly distributed across loci, 10 of them occurring at the locus Ccon70. The spectrum of mutations across alleles at Ccon70 was also non-random, with all of them occuring in alleles in the upper half of the allele size distribution. The mutations observed fit the Stepwise Mutation Model well, ie, mutations could always be assigned to an allele which differed in size from them by one repeat unit. The parental origins of the Ccon70 mutations were established and appear more female-biased than vertebrate mutations, significantly so compared to human haemophilia A and primate intron mutations. Six of the Ccon70 mutations decreased allele size. This result may indicate that the lack of meiosis in males (which are haploid in ants) reduces the mutation rate in that sex relative to species with both sexes diploid.

  48. Crozier, R. H. and R. E. Page (1985). "On being the right size: male contributions and multiple mating in social Hymenoptera." Behav. Ecol. Sociobiol. 18: 105-115.

  49. Crozier, R. H. and P. Pamilo (1978). Effect of haplo-diploidy on genetic variation under some selection models, 14th Int. Congr. Genet.; Moscow, Contrib. Paper Sessions Abrstr. Sect. 21-32:6.

  50. Crozier, R. H. and P. Pamilo (1980). "Asymmetry in relatedness." Nature 283: 604.

  51. Crozier, R. H. and P. Pamilo (1984). Relatedness within and between colonies of a queenless ant Rhytidoponera mayri. [Abstract], P. 314 in: XVII International Congress of Entomology. Hamburg, Federal Republic of Germany, August 20-26, 1984. Abstract Volume. Hamburg: 17th International Congress of Entomology, 960 p.

  52. Crozier, R. H. and P. Pamilo (1986). "Relatedness within and between colonies of a queenless ant species of the genus Rhytidoponera (Hymenoptera: Formicidae)." Entomol. Gen. 11: 113-117.

  53. Crozier, R. H., P. Pamilo, et al. (1984). "Relatedness and microgeographic genetic variation in Rhytidoponera mayri, an Australian arid-zone ant." Behav. Ecol. Sociobiol. 15: 143-150.

  54. Crozier, R. H., P. Pamilo, et al. (1986). "Evolutionary patterns in some putative Australian species in the ant genus Rhytidoponera." Aust. J. Zool. 34: 535-560.

  55. Crozier, R. H. (1992). "The genetic evolution of flexible strategies." Am. Nat. 139: 218-223.

  56. Crozier, R. H. (1993). Molecular methods for insect Phylogenetics. Molecular Approaches to Fundamental and Applied Entomology. J. Oakeshott and M. J. Whitten. New York, Springer-Verlag: 164-209.

  57. Crozier, R. H. (1994). "The second sociality." Science 265: 1255-1257.

  58. Crozier, R. H. (1996). "Evolutionary pinnacle." Science 271: 1682.

  59. Crozier, R. H., N. Dobric, et al. (1995). "Mitochondrial-DNA sequence evidence on the phylogeny of Australian jack-jumper ants of the Myrmecia pilosula complex." Mol. Phylogenet. Evol. 4: 20-30.

  60. Crozier, R. H. and R. M. Kusmierski (1994). Genetic distances and the setting of conservation priorities. Bundoora, Dept. Genet. & Human Variation, La Trobe University: 228-237.

  61. Crozier, R. H. and P. Pamilo (1993). Sex allocation in social insects: problems in prediction and estimation. Evolution and diversity of sex ratio in haploid insects and mites. D. L. Wrensch and M. A. Ebbert. New York, Chapman and Hall: 369-383.

  62. Crozier, R. H. and P. Pamilo (1996). Evolution of social insect colonies. Oxford. 306 p., Oxford University Press.

  63. Crozier, R. H. and P. Pamilo (1996). "One into two will go." Nature 383: 574-575.

  64. Crozier, R. H., D. R. Smith, et al. (1994). Studying social insects in an age of molecular biology. Les Insectes Sociaux. 12th Congress of the International Union for the Study of Social Insects, Paris, Sorbonne, 21-27 August 1994. A. Lenoir, G. Arnold and M. Lepage. Paris, Universitй Paris Nord: 35.

  65. Donovan, G. R., B. A. Baldo, et al. (1993). "Molecular cloning and characterization of a major allergen (Myr p I) from the venom of the Australian jumper ant, Myrmecia pilosula." Biochim. Biophys. Acta Int J Biochem Biophys 171: 272-280.
    Австралийский прыгающий муравей Myrmecia pilosula... Five IgE-binding components were identified in the venom of the Australian jumper ant, Myrmecia pilosula using SDS polyacrylamide gel electrophoresis and Western blotting. A cDNA clone which encodes the entire amino acid sequence of one of the major IgE-binding venom allergens has been nucleotide sequenced. The IgE-binding determinants of this allergen are located in its C-terminal domain. Database searches, however, did not reveal any homology with any other known nucleotide or protein sequence. The sequenced allergenic polypeptide has, according to the convention recommended by the International Union of Immunological Societies (IUIS), been named Myr p I.

  66. Donovan, G. R., M. D. Street, et al. (1996). "Expression of jumper ant (Myrmecia pilosula) venom allergens: post-translational processing of allergen gene products." Biochem. Mol. Biol. Int. 39(5): 877-885.
    Анализ ядовитого аппарата Myrmecia pilosula. N-terminal analyses of electrophoretically-separated allergenic polypeptides of the venom of the jumper ant M. pilosula showed that five out of the six allergenic polypeptides identified are homologous with the cloned major allergen Myr p I and may be derived from a single precursor polypeptide. The sixth polypeptide is homologous with a second cloned major allergen, Myr p II which is expressed as a single precursor polypeptide but exists in its native form as a disulphide bond-linked complex.

  67. Dowton, M. and A. D. Austin (1994). "Molecular phylogeny of the insect order Hymenoptera: Apocritan relationships." Proc. Natl. Acad. Sci. U.S.A. 91: 9911-9915.
    Род Myrmecia признан сестринской группой к (Polistes + Apis) по данным исследования рибосомальной РНК (16S rRNA).

  68. Evans, J. D. (1995). "Relatedness threshold for the production of female sexuals in colonies of a polygynous ant, Myrmica tahoensis, as revealed by microsatellite DNA analysis." Proc. Natl. Acad. Sci. U.S.A. 92: 6514-6517.
    Степень генетического родства муравьев в колониях Myrmica tahoensis была определена на основании исследования highly polymorphic microsatellite DNA loci. These analyses show that colonies fall into one of two classes. In roughly half of the sampled colonies, workers and female offspring appear to be full sisters. The remaining colonies contain offspring produced by two or more queens. Colonies that produce female sexuals are always composed of highly related females, while colonies that produce males often show low levels of nestmate relatedness. These results support theoretical predictions that workers should skew sex allocation in response to relatedness asymmetries found within colonies. The existence of a relatedness threshold below which female sexuals are not produced suggests a possible mechanism for worker perception of relatedness. Two results indicate that workers use genetic cues, not queen number, in making sex-allocation decisions. (i) The number of queens in a colony was not significantly correlated with either the level of relatedness asymmetry or the sex ratio. (ii) Sex-ratio shifts consistent with a genetically based mechanism of relatedness assessment were seen in an experiment involving transfers of larvae among unrelated nests. Thus workers appear to make sex-allocation decisions on the basis of larval cues and appear to be able to adjust sex ratios long after egg laying.

  69. Gardner A.L. (1971). "Karyotypes of two rodents from Peru, with a description of the highest diploid number recorded for a mammal." Experimentia. 26: 1088-1089.

  70. Glancey, B. M., M. K. St. Romain, et Crozier, R.H. (1976). "Chromosome numbers of the red and black imported fire ants, Solenopsis invicta and S. richteri." Ann. Entomol. Soc. Am. 69: 469-470.
    The chromosome number for the red and black imported fire ants, Solenopsis invicta Buren and S. richteri Forel, was determined to be n=16. A special case of diploidy in S. invicta males has been observed; these diploid males are sterile. The occurrence of diploid males as well as normal haploid males in S. invicta is explicable under the hypothesis that sex determination in Hymenoptera is governed by genotypes at one or more sex loci.

  71. Goday C., Pimpinelli S.(1986). "Cytological analysis of chromosomes in the two species Parascaris univalens and P.equorum." Chromosoma (Berl). 94: 1-10.

  72. Goodisman, M. A. D. and R. H. Crozier (2001). "Clines maintained by overdominant selection in hybrid zones." Hereditas 134: 161-169.
    Гибриды и моделирование гибридных зон. Hybrid zone models often consider environment-independent selection to operate against all hybrids. However, empirical studies suggest that hybrids may be as fit or fitter than the hybridizing parental taxa in some environments. In this study we develop a novel mathematical model to explore the effects of one form of hybrid superiority on the genetic structure of hybrid zones. Our primary goals were to investigate the allele frequency clines at a locus experiencing overdominant selection and at a linked neutral or underdominant locus. Our results indicate that overdominant selection results in flat equilibrium allele frequency clines throughout the hybrid zone and an excess of heterozygosity relative to Hardy-Weinberg equilibrium. However, the genetic clines at linked neutral or underdominant loci tend not to reflect this overdominance even when the loci are tightly linked. Overall, we conclude that overdominance is unlikely to be detected in genetic surveys unless many loci are assayed.

  73. Hauschteck-Jungen, E. and H. Jungen (1976). "Ant chromosomes. I. The genus Formica." Insect. Soc. 23: 513-524.

  74. Hirai, H., M. T. Yamamoto, Ogura, K., Satta, Y., Yamada, M., Taylor, R.W., Imai, H.T. (1994). "Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of the Myrmecia pilosula species complex." Chromosoma 103: 171-178.
    Комплекс видов муравьев Myrmecia pilosula изучен по рибосомальным РНК. Chromosomal localization of rDNA in samples of five taxa of the Myrmecia pilosula species complex (Hymenoptera: Formicidae: Myrmeciinae) with 2n = 3 (M. croslandi), 8 (M. imaii), 10 (M. banksi), 18 (M. haskinsorum), and 27 (M. pilosula) was carried out by fluorescence in situ hybridization (FISH) using cloned M. croslandi rDNA (pMc.r2) including the coding region for 28S rRNA. Results show that (1) the 28S rDNA in the genome of these ants is repetitive and is localized in pericentromeric C-bands, (2) the number of chromosomes carrying rDNA is two in M. croslandi, M. imaii and M. banksi, six in M. haskinsorum and ten in M. pilosula, and (3) only one or two clusters of rRNA genes generate nucleoli in each species. We suggest that the rDNA in the ancestral stock of the M. pilosula complex was localized originally in a pericentromeric C-band, and multiplied by chance with time during saltatory increases in C-banding following episodes of centric fission. Most rDNA multiplied on various chromosomes seems to be inactivated and eliminated from the genome, together with C-bands, by A to M-inversion or centric fusion, with the remnant rDNAs is dispersed in the genome by centric fission and A to M-inversion.

  75. Hirai, H., M. T. Yamamoto, Taylor, R.W., Imai, H.T. (1996). "Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genus Myrmecia (Formicidae). [Erratum: 1997, v. 105 (6), p. 380-381.]." Chromosoma 105: 190-196.
    У 16 видов Myrmecia (с 2n = 4 - 76) исследованы chromosomal localization of 28S rDNA was investigated, using the fluorescence in situ hybridization method and karyographic analysis. A unique phenomenon was observed: the number of chromosomes carrying 28S rDNA increases from 2 in species with low chromosome numbers to 19 in species with high chromosome numbers. This is termed rDNA dispersion. Centric fission and a reciprocal translocation that occurs in C-bands were detected as the major mechanisms involved in rDNA dispersion.

  76. Hoshiba H., Matuura M., Imai H.T. (1989). "Karyotype evolution in the social wasps (Hymenoptera: Vespidae)." Jpn.J.Genet., 64: 209-222.

  77. Hung, A. C. F., H. T. Imai, et al. (1972). "The chromosomes of nine ant species (Hymenoptera: Formicidae) from Taiwan, Republic of China." Ann. Entomol. Soc. Am. 65: 1023-1025.

  78. Hung, H. C. F., Reed H.C., Vinson S.B. (1981). "Chromosomes of four species of Polistes wasps." Caryologica, 34: 225-230.

  79. Imai, H. T., C. Baroni Urbani, et al. (1984). "Karyological survey of Indian ants." Jpn. J. Genet. 59: 1-32.
    Исследованы кариотипы 94 видов муравьев Индии. Разброс от n=5 до 38, though the frequency distribution is bimodal with a remarkable antimode at n=11 and two modal points and n=10 and 15. Based on this bimodal distribution, Indian ants were classified into two groups: Lower-numbered species (n<11) and high-numbered species (n >11), the former being characterized by metacentric-rich karyotypes, and acrocentrics predominate in the latter. The three major subfamilies (Ponerinae, Myrmicinae, and Formicinae) showed a highly divergent distribution in chromosome number, ranging between n=7-38, 6-35, and 8-27, respectively, suggesting a convergence in karyotype evolution of each subfamily. Another three subfamilies, of which only a few species were examined, had moderate or lower numbers, i. e., n=5-14 in Dolichoderinae, n=14 in Cerapachyinae, and n=12 in Dorylinae. We found four Robertsonian polymorphisms, two pericentric inversion polymorphisms, and four reciprocal translocations, three of which were fixed. Robertsonian polymorphisms were found only in higher-numbered species, while translocations were restricted to lower-numbered species. A possible biological significance for this nonrandom distribution of rearrangements is discussed with reference to karyotype evolution in ants.

  80. Imai, H. T., R. H. Crozier, et Taylor, R.W. (1977). "Karyotype evolution in Australian ants." Chromosoma 59: 341-393.

  81. Imai, H. T., H. Hirai, Satta, Y., Shiroishi, T., Yamada, M., Taylor, R.W. (1992). "Phase specific Ag-staining of nucleolar organizer regions (NORs) and kinetochores in the Australian ant Myrmecia croslandi." Jpn. J. Genet. 67: 437-447.

  82. Imai, H. T., R. W. Taylor, et al. (1988). "Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis." Jpn. J. Genet. 63: 159-185.
    Эволюция кариотипов у муравьев обсуждается с учетом послседних открытий, в том числе по хромосомным мутациям и по низкохромосомным видам: (the complexes of Myrmecia pilosila (Smith) (n = 1, 5 or 9 to 16); M. piliventris Smith (n = 2, 3-4, 17 or 32) and Ponera scabra Wheeler (n = 3 or 4, 2n = 7 or 8)). Translocations and Robetrtsonian polymorphisms are confirmed to be non-randomly distributed among ants - the former are found at high frequencies in species with low chromosome numbers ( n < 12), while the latter predominate in those with high numbers (n > 12). This situation is consistent with the minimum interaction hypothesis of Imai et al. (1986), under which translocations are expected to occur most frequently in low- numbered karyotypes, and that the resulting genetic risks are minimized by increase in chromosome and/or arm numbers through centric fission and pericentric inversion. Centric fusion is considered to be a transient event in karyotype evolution, resulting from telomere instability in acrocentric chromosomes.

  83. Imai, H. T. and R. W. Taylor (1989). "Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n=1." Chromosoma 98: 456-460.

  84. Imai, H. T., R. W. Taylor, Kubota, M., Ogata, K., Wada, M.Y. (1991 ("1990")). "Notes on the remarkable karyology of the primitive ant Nothomyrmecia macrops, and of the related genus Myrmecia (Hymenoptera: Formicidae)." Psyche 97: 133-140.

  85. Imai, H. T., R. W. Taylor, et Crozier, R.H. (1994). "Experimental bases for the minimum interaction theory. I. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hymenoptera: Formicidae: Myrmeciinae)." Jpn. J. Genet. 69: 137-182.

  86. Jakubczak, J. L., W. D. Burke, et Eickbush, T.H. (1991). "Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects." Proc. Natl. Acad. Sci. U.S.A. 88: 3295-3299.

  87. Jaisson, P., D. Fresneau, et Taylor, R.W. (1993). "La repartition du travail social dans une jeune fondation de la fourmi bull-dog Myrmecia croslandi Taylor." Actes Coll. Insect. Soc. 8: 161-172.
    Исследовано поведение разделения труда в молодых семьях Myrmecia croslandi Taylor, начиная с наличия в них 4 рабочих особей. Non-claustral colony foundation seems to be the rule in Myrmecia. At the conclusion the queen was still prominently dedicated to guarding the nest entrance and to patrolling outside the nest. She was the most active individual present, contributing importantly to brood-care and domestic activities, and the major occupant of the central area of the single nest chamber, with maximum access to the brood, followed by worker 2. Worker 3 seemed to fill the role of the "inactive subcaste" described previously in mature colonies of several ponerine and myrmeciine species. Worker 1 had a relatively wide behavioural spectrum, though narrower than that of the queen. The activities of worker 4 comprised nursing and foraging. The evolutionary implications of this method of colony foundation (where the queen remains the most active nestmate in most functional behaviours - including out-of-nest activities - in worker-right incipient colonies) are analysed with regard to the taxonomic and biogeographic status of the subfamily Myrmeciinae.

  88. Jermiin, L. S. and R. H. Crozier (1994). "The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content." J. Mol. Evol. 38: 282-294.
    У муравья Tetraponera rufoniger изучен участок (cytochrome b) в митохондриальной ДНК. Polymerase chain reaction (PCR) followed by sequencing of single-stranded DNA yielded sequence information from the cytochrome b (cyt b) region in mitochondrial DNA from the ant Tetraponera rufoniger. Compared with the cyt b genes from Apis mellifera, Drosophila melanogaster, and D. yakuba, the overall A + T content (A + T%) of that of T. rufoniger is lower (69.9% vs 80.7%, 74.2%, and 73.9%, respectively) than those of the other three. The codon usage in the cyt b gene of T. rufoniger is biased although not as much as in A. mellifera, D. melanogaster, and D. yakuba: T. rufoniger has eight unused codons whereas D. melanogaster, D. yakuba, and A. mellifera have 21, 20, and 23. respectively. The inferred cyt b polypeptide chain (PPC) of T. rufoniger has diverged at least as much from a common ancestor with D. yakuba as has that of A. mellifera (approximately 3.5 vs approximately 2.9). Despite the lower A + T%, the relative frequencies of amino acids in the cyt b PPC of T. rufoniger are significantly (P < 0.05) associated with the content of adenine and thymine A + T%) and size of codon families. The mitochondrially located cytochrome oxidase subunit II genes (CO-II) of endopterygote insects have significantly higher average A + T% (approximately 75%) than those of exopterygous (approximately 69%) and paleopterous (approximately 69%) insects. The increase in A + T% of endopterygote insects occurred in Upper Carboniferous and coincided with a significant acceleration of PPC divergence. However, acceleration of PPC divergence is not significantly correlated with the increase of the A + T% (P > 0.1). The high A + T%, the biased codon usage, and the increased PPC divergence of. Hymenoptera can in that respect most easily be explained by diretional mutation pressure which began in the Upper Carboniferous and still occurs in most members of the order. Given the roughly identical A + T% of the cyt b and CO-II genes from the other insects whose DNA sequences are known (A. mellifera, D. melanogaster, and D. yakuba), it see most likely that the A + T% of T. rufoniger declined secondarily within the last 100 Myr as a result of a reduced directional mutation pressure.

  89. Masuko, K. (1988). A note on trophic egg-feeding by the queen of the primitive ant Myrmecia (pilosula) n=1, // Annual report of national instutute of genetics n°38. p. 84-85.

  90. Maddison D.R. (1985). Chromosomal diversity and evolution in the ground beetle genus Bembidion and related taxa (Coleoptera: Carabidae: Trechitae) // Genetica (Ned), 1985, 66, #2, p. 93-114.
    Обзор цитогенетики надтрибы Trechitae и её триб Zolini, Trechini, Pogonini, Bembidiini. Исследовав 205 видов мелких жужелиц рода Bembidion (Coleoptera, Carabidae), оказалось, что у 176 из них абсолютно одинаковый кариотип: 2n=22+XY.

  91. Meyne, J., H. Hirai, et Imai, H.T. (1995). "FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formicidae)." Chromosoma 104: 14-18.
    Хромосомы нескольких видов рода Myrmecia были hybridized with deoxyoligomer probes of either (T2AG2)7, the putative insect telomere repeat sequence, or (T2AG3)7, the vertebrate telomere repeat sequence. While both sequences hybridized over a range of stringency conditions, (T2AG2)n was clearly the predominant sequence at the termini of the Myrmecia chromosomes. No interstitial sites of either sequence were detected. The genus Myrmecia has a wide range of karyotypes, with chromosome numbers ranging from 2n=2-84. It has been hypothesized that the ancestral karyotype was 2n=4 and karyotype evolution proceeded with an increase in chromosome number. In the absence of detectable interstitial sites of telomere sequence, it is interesting to speculate on the origin of the new telomeres as the chromosome numbers increased.

  92. Ogata, K. (1991). "Ants of the genus Myrmecia Fabricius: a review of the species groups and their phylogenetic relationships (Hymenoptera: Formicidae: Myrmeciinae)." Syst. Entomol. 16: 353-381.
    Ревизия рода Myrmecia Fabricius на уровне групп видов, которых выделено 9: M. aberrans, M. cephalotes, M. gulosa, M. mandibularis, M. nigrocincta, M. picta, M. pilosula, M. tepperi и группа M. urens. Определители и списки всех видов. 8 групп во многом по составу остались сходными с таковыми у John Clark, но с новыми уточнениями по признакам. Филогения и 6 кладограмм, вывведенные по 4 типам данных. Наиболее приемлимая кладограмма выглядит так: (1) группа aberrans сестринская ко всем остальным; (2) группы pilosula, tepperi и mandibularis составляют монофилитическую кладу, хотя монофилия первых двух не подтверждена; (3) группы gulosa, nigrocincta, urens и picta составляют монофилитическую кладу, хотя монофилия группы picta не подтверждена; (4) филогенетическое положение группы cephalotes не определено.

  93. Pamilo, P. and R. H. Crozier (1981). "Genic variation in male haploids under deterministic selection." Genetics 98: 199-214.

  94. Pamilo, P. and R. H. Crozier (1982). "Measuring genetic relatedness in natural populations: methodology." Theor. Pop. Biol. 21: 171-193.
    Описывается основная методология для установления степени родственности в популяциях общественных насекомых. The methodology of this estimation from genetic data in the absence of pedigree information has been poorly understood; we develop this methodology for b, the regression coefficient of relatedness, and discuss its applications. Both b and G (the pedigree coefficient of relatedness) are potentially asymmetric coefficients, whereas phi, r, and Fst are necessarily symmetric. We develop an estimator for b suitable for small samples, and also one for standard deviation, and examine the properties for both using sampling simulations. The b estimator returns values slightly below E(b), and the standard deviation estimator yields conservative confidence intervals. A comparative study of b and Fst shows that, given the same set of data, b is estimated with greater reliability than is Fst. As is the case for Fst, b can be used to examine population structure at various levels, and b possesses the advantage of an estimator for its standard error, which can also be used to test for heterogeneity among the loci surveyed. The actual numbers of identical genes held in common by interactiong individuals, and not simply their proportions, need to be considered in using coefficients of relatedness in inclusive fitness calculations. This necessity is handled by the weighted coefficients of relatedness, G' and b', which have been referred to in the literature as r (as have most relatedness measures).

  95. Rosengren, M., R. Rosengren, Soderlund, V. (1980). "Chromosome numbers in the genus Formica with special reference to the taxonomical position of Formica uralensis Ruzsk. and Formica truncorum Fabr." Hereditas 92: 321-326.

  96. Sanetra, M. and R. H. Crozier (2000). "Characterization of microsatellite loci in the primitive ant Nothomyrmecia macrops Clark." Mol. Ecol. 9: 2169-2170.

  97. Sanetra, M. and R. H. Crozier (2001). "Polyandry and colony genetic structure in the primitive ant Nothomyrmecia macrops." J. Evol. Biol. 14: 368-378.
    Австралийский эндемик Nothomyrmecia macrops рассматривается как наиболее примитивный мураей среди всех современных их видов. We investigated the genetic structure of colonies to determine queen mating frequencies and nestmate relatedness. An average of 18.8 individuals from each of 32 colonies, and sperm extracted from 34 foraging queens, were genotyped using five highly variable microsatellite markers. Queens were typically singly (65%) or doubly mated (30%), but triple mating (5%) also occurred. The mean effective number of male mates for queens was 1.37. No relationship between colony size and queen mate number was found. Nestmate workers were related by b = 0.61 +/- 0.03, significantly above the threshold under Hamilton's rule over which, all else being equal, altruistic behaviour persists, but queens and their mates were unrelated. In 25% of the colonies we detected a few workers that could not have been produced by the resident queen, although there was no evidence for worker reproduction. Polyandry is for the first time recorded in a species with very small mature colonies, which is inconsistent with the sperm- limitation hypothesis for the mediation of polyandry levels. Facultative polyandry is therefore not concerned to the highly advanced ant genera, but may have arisen at an early stage in ant social evolution.

  98. Sanetra, M. and R. H. Crozier (2002). "Daughters inherit colonies from mothers in the 'living-fossil' ant Nothomyrmecia macrops." Naturwissenschaften 89: 71-74.
    Недавно оплодотворенные самки моногинных муравьев обычно основывают их колонии независимо, без помощи рабочих. In polygynous (multiple queen) species queens are often adopted back into their natal nest and new colonies are established by budding. We report that the Australian 'living-fossil' ant, Nothomyrmecia macrops, is exceptional in that its single queen can be replaced by one of the colony's daughters. This type of colony founding is an interesting alternative reproductive strategy in monogynous ants, which maximizes fitness under kin selection. Successive queen replacement results in a series of reproductives over time (serial polygyny), making these colonies potentially immortal. Workers raise nieces and nephews (relatedness < 0.375) the year after queen replacement. Although N. macrops is 'primitive' in many other respects, colony inheritance is likely to be a derived specialization resulting from ecological constraints on solitary founding.

  99. Sullender, B. W. and M. J. Johnson (1998). A preliminary molecular phylogeny for the Formicidae. Social insects at the turn of the millenium. Proceedings of the XIII International Congress of IUSSI, Adelaide Australia, 29 December 1998 - 3 January 1999. M. P. Schwarz and K. Hogendoorn. Adelaide. 535 p., XIII Congress of IUSSI: 460.

  100. Tay, W. T., J. M. Cook, et al. (1997). "Migration between nests in the Australian arid-zone ant Rhytidoponera sp. 12 revealed by DGGE analyses of mitochondrial DNA." Mol. Ecol. 6: 403-411.

  101. Tay, W. T. and R. H. Crozier (2000). "Microsatellite analysis of gamergate relatedness of the queenless ponerine ant Rhytidoponera sp. 12." Ins. Soc. 47: 188-192.
    Rhytidoponera sp. 12 is a queenless ponerine ant. Reproduction is only by several to many mated workers (gamergates). Until now there has been no information on the variation in relatedness between colonies of such ants. Here we use data from five highly polymorphic microsatellite markers to determine the intracolony relatednesses of cohabiting gamergates (bgg) collected from five colonies. Contrary to expectations from previous work, cohabiting gamergates are highly related, and colonies were provisionally classified into 2 types based on bgg: Type 1 colonies have full sister gamergates, while in Type 2 colonies gamergates are not full sisters, although still significantly related. The high relatedness observed between nestmate gamergates despite the low relatedness expected on theoretical grounds, the observed low relatedness between unmated nestmates, and the genetic signatures of migration between colonies indicates frequent bottlenecking, such as from colony founding events or catastrophic reductions in the numbers of gamergates per colony.

  102. Tay, W. T. and R. H. Crozier (2000). "Nestmate interactions and egg-laying behavior in the queenless ponerine ant Rhytidoponera sp. 12." Ins. Soc. 47: 133-140.
    Rhytidoponera sp. 12 is a polygynous Australian arid-zone queenless ponerine ant with morphologically identical mated workers (gamergates) and unmated workers. Discriminating gamergates from virgin workers in R. sp. 12 is therefore difficult. Nestmate interactions are not well understood in R. sp. 12. All female nestmates have functional ovaries and spermatheca. The ability of unmated workers to lay trophic eggs has been unknown. In four R. sp. 12 colonies collected during 1997 we found gamergates to possess tough reddish-brown cuticle which differed from the dark brown unmated workers. In this study we successfully identified gamergates by combining this observable morphological difference with previously described behavioural traits thus eliminating the need of identification through dissection. In a laboratory kept colony gamergates showed mutual tolerance. Egg-shuffling behaviour by gamergates was observed. A high proportion of unmated workers laid trophic eggs that were either cannibalised or shared between nestmates and larvae were observed to feed exclusively on these trophic eggs. Eggs laid by gamergates were sometimes eaten, although the majority of these were always deposited onto egg piles carried by unmated workers. Oophagy of viable eggs by gamergates may represent a form of dominance behaviour or, together with egg-shuffling, cheating behaviour by less fecund gamergates. Removal of gamergates from three colonies led to oogenesis in some unmated workers, indicating that ovarian development in virgin workers may be suppressed in the presence of gamergates.

  103. Tay, W. T. and R. H. Crozier (2001). "Mating behaviour of Rhytidoponera sp. 12 ants inferred from microsatellite analysis." Mol. Ecol. 10: 167-173.
    In the queenless ponerine ant Rhytidoponera sp. 12, all workers have a spermatheca and functional ovaries and are potentially able to mate and reproduce. Within a colony gamergates may either be full sisters to each other (Type 1 colony), or they may not be full sisters but still be significantly related to each other (Type 2 colony) due to daughter gamergates reproducing in their natal colonies after mating. Despite many studies the mating behaviour of R. sp. 12 has been poorly understood. In this study, we used microsatellite markers to investigate intracolony relatednesses of male mates to the gamergates (b(mq)) and between male mates (b(mm)), and mating frequencies and mating patterns, using gamergate DNA and sperm DNA isolated from the spermathecae of gamergates from five colonies. Average b(mm) and b(mq) estimates for all five colonies studied were not significantly different from zero, suggesting that on average, within colonies, mating males were unrelated both to each other and to the gamergates. A low frequency (3%) of multiple mating by gamergates was detected. Multiple mating by individual males with sister gamergates within Type 1 colonies was also detected at 3% and could give rise to half-sister nestmate workers. Polygamy in R. sp. 12 might indicate local female-biased operational sex ratios despite the expectation of overall male biases. Our results concur with previous reports that gamergates mate within the colony or nearby, but indicate more diversity in mating patterns than previously indicated for this polygynous ponerine ant species.

  104. Taylor, R. W. (1991). "Myrmecia croslandi sp. n., a karyologically remarkable new Australian jack-jumper ant (Hymenoptera: Formicidae: Myrmeciinae)." J. Aust. Entomol. Soc. 30: 288.

  105. Wetterer, J. K., T. R. Schultz, et al. (1998). "Phylogeny of fungus-growing ants (tribe Attini) based on mtDNA sequence and morphology." Mol. Phylogenet. Evol. 9: 42-47.

  106. Whitfield, J. B. and S. A. Cameron (1998). "Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera." Mol. Biol. Evol. 15: 1728-1743.



 

©2005, Vladislav Krasilnikov (translation & supplement) 

Всякое использование без согласования с автором и без активной гиперссылки на наш сайт преследуется в соответствии с Российским законодательством об охране авторских прав.








Разработка сайта и дизайн:
© 2003 - 2007
Владислав Красильников

Здесь могла бы быть ваша реклама

Rambler's Top100

Почему Лазиус?
 LASIUS@narod.ru

Используются технологии uCoz